Analysis of nuclear lamin isoprenylation in Xenopus oocytes: isoprenylation of lamin B3 precedes its uptake into the nucleus

نویسندگان

  • I Firmbach-Kraft
  • R Stick
چکیده

Protein prenylation is a posttranslational modification involving the covalent attachment of a prenyl lipid to a cysteine at or near the COOH terminus of a protein. It is required for membrane localization and efficient function of a number of cytoplasmic as well as nuclear proteins including the proto-oncogenic and activated forms of Ras. Farnesylation in conjunction with a nuclear localization signal has been shown to be necessary to target newly synthesized nuclear lamins to the inner nuclear envelope membrane. It is, however, not clear where in the cell isoprenylation of nuclear lamins takes place. In this study we describe in vivo and in vitro experiments on the isoprenylation of the Xenopus oocyte nuclear lamin B3. We show by kinetic analysis that newly synthesized lamins are isoprenylated in the cytosol of oocytes before uptake into the nucleus. From our data it can be concluded that isoprenylation of lamins in the nucleus, as it is observed under certain conditions of isoprene starvation, represents a default pathway rather than the physiological situation. We further analyzed the capacity of isolated nuclei to carry out isoprenylation of B3. Our results are in line with a dual localization of a protein farnesyltransferase in the cytosol and nuclei of amphibian oocytes. Implications for the possible functions of a nuclear protein farnesyltransferase as well as possible mechanisms of the selective inhibition of farnesylation of cytoplasmic proteins by peptidomimetics are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of CaaX-dependent modifications in membrane association of Xenopus nuclear lamin B3 during meiosis and the fate of B3 in transfected mitotic cells

Recent evidence shows that the COOH-terminal CaaX motif of lamins is necessary to target newly synthesized proteins to the nuclear envelope membranes. Isoprenylation at the CaaX-cysteine has been taken to explain the different fates of A- and B-type lamins during cell division. A-type lamins, which loose their isoprenylation shortly after incorporation into the lamina structure, become freely s...

متن کامل

Association of prenylated proteins with the plasma membrane and the inner nuclear membrane is mediated by the same membrane-targeting motifs.

Targeting of nuclear lamins to the inner nuclear envelope membrane requires a nuclear localization signal and CaaX motif-dependent posttranslational modifications, including isoprenylation and carboxyl methylation. These modifications, although necessary for membrane targeting, are not sufficient to mediate stable association with membranes. We show that two variants of lamin B3 (i.e., B3a and ...

متن کامل

Lamin A precursor is localized to intranuclear foci.

Lamin A is synthesized in the cytoplasm as a precursor bearing a carboxyl-terminal CaaX box or isoprenylation signal. This precursor is post-translationally processed through multiple steps: isoprenylation with a farnesyl residue on the cysteine of the CaaX box, proteolytic removal of the last three amino acids, carboxymethylation of the cysteine residue and, finally, proteolytic removal of 15 ...

متن کامل

The CaaX motif is required for isoprenylation, carboxyl methylation, and nuclear membrane association of lamin B2

Recent evidence suggests that the conserved COOH-terminal CaaX motif of nuclear lamins may play a role in targeting newly synthesized proteins to the nuclear envelope. We have shown previously that in rabbit reticulocyte lysates the cysteine residue of the CaaX motif of chicken lamin B2 is necessary for incorporation of a derivative of mevalonic acid, the precursor of isoprenoids. Here we have ...

متن کامل

Isoprenylation is required for the processing of the lamin A precursor

The nuclear lamina proteins, prelamin A, lamin B, and a 70-kD lamina-associated protein, are posttranslationally modified by a metabolite derived from mevalonate. This modification can be inhibited by treatment with (3-R,S)-3-fluoromevalonate, demonstrating that it is isoprenoid in nature. We have examined the association between isoprenoid metabolism and processing of the lamin A precursor in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 129  شماره 

صفحات  -

تاریخ انتشار 1995